Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
EClinicalMedicine ; 53: 101655, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: covidwho-2237425

RESUMO

Background: More than half the global population has been exposed to SARS-CoV-2. Naturally induced immunity influences the outcome of subsequent exposure to variants and vaccine responses. We measured anti-spike IgG responses to explore the basis for this enhanced immunity. Methods: A prospective cohort study of mothers in a South African community through ancestral/beta/delta/omicron SARS-CoV-2 waves (March 2020-February 2022). Health seeking behaviour/illness were recorded and post-wave serum samples probed for IgG to Spike (CoV2-S-IgG) by ECLISA. To estimate protective CoV2-S-IgG threshold levels, logistic functions were fit to describe the correlation of CoV2-S-IgG measured before a wave and the probability for seroconversion/boosting thereafter for unvaccinated and vaccinated adults. Findings: Despite little disease, 176/339 (51·9%) participants were seropositive following wave 1, rising to 74%, 89·8% and 97·3% after waves 2, 3 and 4 respectively. CoV2-S-IgG induced by natural exposure protected against subsequent SARS-CoV-2 infection with the greatest protection for beta and least for omicron. Vaccination induced higher CoV2-S-IgG in seropositive compared to naïve vaccinees. Amongst seropositive participants, proportions above the 50% protection against infection threshold were 69% (95% CrI: 62, 72) following 1 vaccine dose, 63% (95% CrI: 63, 75) following 2 doses and only 11% (95% CrI: 7, 14) in unvaccinated during the omicron wave. Interpretation: Naturally induced CoV2-S-IgG do not achieve high enough levels to prevent omicron infection in most exposed individuals but are substantially boosted by vaccination leading to significant protection. A single vaccination in those with prior immunity is more immunogenic than 2 doses in a naïve vaccinee and may provide adequate protection. Funding: UK NIH GECO award (GEC111), Wellcome Trust Centre for Infectious Disease Research in Africa (CIDRI), Bill & Melinda Gates Foundation, USA (OPP1017641, OPP1017579) and NIH H3 Africa (U54HG009824, U01AI110466]. HZ is supported by the SA-MRC. MPN is supported by an Australian National Health and Medical Research Council Investigator Grant (APP1174455). BJQ is supported by a grant from the Bill and Melinda Gates Foundation (OPP1139859). Stefan Flasche is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant number 208812/Z/17/Z).

2.
PLoS Comput Biol ; 18(9): e1010405, 2022 09.
Artigo em Inglês | MEDLINE | ID: covidwho-2162508

RESUMO

Forecasts based on epidemiological modelling have played an important role in shaping public policy throughout the COVID-19 pandemic. This modelling combines knowledge about infectious disease dynamics with the subjective opinion of the researcher who develops and refines the model and often also adjusts model outputs. Developing a forecast model is difficult, resource- and time-consuming. It is therefore worth asking what modelling is able to add beyond the subjective opinion of the researcher alone. To investigate this, we analysed different real-time forecasts of cases of and deaths from COVID-19 in Germany and Poland over a 1-4 week horizon submitted to the German and Polish Forecast Hub. We compared crowd forecasts elicited from researchers and volunteers, against a) forecasts from two semi-mechanistic models based on common epidemiological assumptions and b) the ensemble of all other models submitted to the Forecast Hub. We found crowd forecasts, despite being overconfident, to outperform all other methods across all forecast horizons when forecasting cases (weighted interval score relative to the Hub ensemble 2 weeks ahead: 0.89). Forecasts based on computational models performed comparably better when predicting deaths (rel. WIS 1.26), suggesting that epidemiological modelling and human judgement can complement each other in important ways.


Assuntos
COVID-19 , Doenças Transmissíveis , COVID-19/epidemiologia , Previsões , Humanos , Pandemias , Polônia/epidemiologia
4.
J Travel Med ; 29(3)2022 05 31.
Artigo em Inglês | MEDLINE | ID: covidwho-1758787

RESUMO

BACKGROUND: A rapid, accurate, non-invasive diagnostic screen is needed to identify people with SARS-CoV-2 infection. We investigated whether organic semi-conducting (OSC) sensors and trained dogs could distinguish between people infected with asymptomatic or mild symptoms, and uninfected individuals, and the impact of screening at ports-of-entry. METHODS: Odour samples were collected from adults, and SARS-CoV-2 infection status confirmed using RT-PCR. OSC sensors captured the volatile organic compound (VOC) profile of odour samples. Trained dogs were tested in a double-blind trial to determine their ability to detect differences in VOCs between infected and uninfected individuals, with sensitivity and specificity as the primary outcome. Mathematical modelling was used to investigate the impact of bio-detection dogs for screening. RESULTS: About, 3921 adults were enrolled in the study and odour samples collected from 1097 SARS-CoV-2 infected and 2031 uninfected individuals. OSC sensors were able to distinguish between SARS-CoV-2 infected individuals and uninfected, with sensitivity from 98% (95% CI 95-100) to 100% and specificity from 99% (95% CI 97-100) to 100%. Six dogs were able to distinguish between samples with sensitivity ranging from 82% (95% CI 76-87) to 94% (95% CI 89-98) and specificity ranging from 76% (95% CI 70-82) to 92% (95% CI 88-96). Mathematical modelling suggests that dog screening plus a confirmatory PCR test could detect up to 89% of SARS-CoV-2 infections, averting up to 2.2 times as much transmission compared to isolation of symptomatic individuals only. CONCLUSIONS: People infected with SARS-CoV-2, with asymptomatic or mild symptoms, have a distinct odour that can be identified by sensors and trained dogs with a high degree of accuracy. Odour-based diagnostics using sensors and/or dogs may prove a rapid and effective tool for screening large numbers of people.Trial Registration NCT04509713 (clinicaltrials.gov).


Assuntos
COVID-19 , Cães , Animais , Infecções Assintomáticas , COVID-19/diagnóstico , Humanos , Programas de Rastreamento , SARS-CoV-2 , Sensibilidade e Especificidade , Compostos Orgânicos Voláteis/análise
5.
Euro Surveill ; 26(39)2021 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1448678

RESUMO

BackgroundTo mitigate SARS-CoV-2 transmission risks from international air travellers, many countries implemented a combination of up to 14 days of self-quarantine upon arrival plus PCR testing in the early stages of the COVID-19 pandemic in 2020.AimTo assess the effectiveness of quarantine and testing of international travellers to reduce risk of onward SARS-CoV-2 transmission into a destination country in the pre-COVID-19 vaccination era.MethodsWe used a simulation model of air travellers arriving in the United Kingdom from the European Union or the United States, incorporating timing of infection stages while varying quarantine duration and timing and number of PCR tests.ResultsQuarantine upon arrival with a PCR test on day 7 plus a 1-day delay for results can reduce the number of infectious arriving travellers released into the community by a median 94% (95% uncertainty interval (UI): 89-98) compared with a no quarantine/no test scenario. This reduction is similar to that achieved by a 14-day quarantine period (median > 99%; 95% UI: 98-100). Even shorter quarantine periods can prevent a substantial amount of transmission; all strategies in which travellers spend at least 5 days (mean incubation period) in quarantine and have at least one negative test before release are highly effective (median reduction 89%; 95% UI: 83-95)).ConclusionThe effect of different screening strategies impacts asymptomatic and symptomatic individuals differently. The choice of an optimal quarantine and testing strategy for unvaccinated air travellers may vary based on the number of possible imported infections relative to domestic incidence.


Assuntos
COVID-19 , SARS-CoV-2 , Vacinas contra COVID-19 , Humanos , Pandemias , Quarentena , Reino Unido/epidemiologia
7.
Lancet Public Health ; 6(3): e175-e183, 2021 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1164723

RESUMO

BACKGROUND: In most countries, contacts of confirmed COVID-19 cases are asked to quarantine for 14 days after exposure to limit asymptomatic onward transmission. While theoretically effective, this policy places a substantial social and economic burden on both the individual and wider society, which might result in low adherence and reduced policy effectiveness. We aimed to assess the merit of testing contacts to avert onward transmission and to replace or reduce the length of quarantine for uninfected contacts. METHODS: We used an agent-based model to simulate the viral load dynamics of exposed contacts, and their potential for onward transmission in different quarantine and testing strategies. We compared the performance of quarantines of differing durations, testing with either PCR or lateral flow antigen (LFA) tests at the end of quarantine, and daily LFA testing without quarantine, against the current 14-day quarantine strategy. We also investigated the effect of contact tracing delays and adherence to both quarantine and self-isolation on the effectiveness of each strategy. FINDINGS: Assuming moderate levels of adherence to quarantine and self-isolation, self-isolation on symptom onset alone can prevent 37% (95% uncertainty interval [UI] 12-56) of onward transmission potential from secondary cases. 14 days of post-exposure quarantine reduces transmission by 59% (95% UI 28-79). Quarantine with release after a negative PCR test 7 days after exposure might avert a similar proportion (54%, 95% UI 31-81; risk ratio [RR] 0·94, 95% UI 0·62-1·24) to that of the 14-day quarantine period, as would quarantine with a negative LFA test 7 days after exposure (50%, 95% UI 28-77; RR 0·88, 0·66-1·11) or daily testing without quarantine for 5 days after tracing (50%, 95% UI 23-81; RR 0·88, 0·60-1·43) if all tests are returned negative. A stronger effect might be possible if individuals isolate more strictly after a positive test and if contacts can be notified faster. INTERPRETATION: Testing might allow for a substantial reduction in the length of, or replacement of, quarantine with a small excess in transmission risk. Decreasing test and trace delays and increasing adherence will further increase the effectiveness of these strategies. Further research is required to empirically evaluate the potential costs (increased transmission risk, false reassurance) and benefits (reduction in the burden of quarantine, increased adherence) of such strategies before adoption as policy. FUNDING: National Institute for Health Research, UK Research and Innovation, Wellcome Trust, EU Horizon 2021, and the Bill & Melinda Gates Foundation.


Assuntos
Teste para COVID-19/métodos , COVID-19/prevenção & controle , Busca de Comunicante , Quarentena , COVID-19/epidemiologia , Humanos , Modelos Teóricos
8.
Euro Surveill ; 25(5)2020 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1017178

RESUMO

We evaluated effectiveness of thermal passenger screening for 2019-nCoV infection at airport exit and entry to inform public health decision-making. In our baseline scenario, we estimated that 46% (95% confidence interval: 36 to 58) of infected travellers would not be detected, depending on incubation period, sensitivity of exit and entry screening, and proportion of asymptomatic cases. Airport screening is unlikely to detect a sufficient proportion of 2019-nCoV infected travellers to avoid entry of infected travellers.


Assuntos
Viagem Aérea , Temperatura Corporal , Infecções por Coronavirus/diagnóstico , Febre/diagnóstico , Programas de Rastreamento , Pneumonia Viral/diagnóstico , COVID-19 , Doenças Transmissíveis Emergentes , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Tomada de Decisões , Humanos , Programas de Rastreamento/métodos , Programas de Rastreamento/normas , Modelos Teóricos , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Vigilância da População , Saúde Pública
9.
Nat Commun ; 11(1): 5012, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: covidwho-834878

RESUMO

Understanding changes in human mobility in the early stages of the COVID-19 pandemic is crucial for assessing the impacts of travel restrictions designed to reduce disease spread. Here, relying on data from mainland China, we investigate the spatio-temporal characteristics of human mobility between 1st January and 1st March 2020, and discuss their public health implications. An outbound travel surge from Wuhan before travel restrictions were implemented was also observed across China due to the Lunar New Year, indicating that holiday travel may have played a larger role in mobility changes compared to impending travel restrictions. Holiday travel also shifted healthcare pressure related to COVID-19 towards locations with lower healthcare capacity. Network analyses showed no sign of major changes in the transportation network after Lunar New Year. Changes observed were temporary and did not lead to structural reorganisation of the transportation network during the study period.


Assuntos
Infecções por Coronavirus/epidemiologia , Pandemias , Pneumonia Viral/epidemiologia , Viagem/tendências , Betacoronavirus , COVID-19 , China/epidemiologia , Atenção à Saúde , Férias e Feriados , Humanos , Densidade Demográfica , Saúde Pública , SARS-CoV-2 , Fatores de Tempo , Meios de Transporte
10.
BMC Med ; 18(1): 259, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: covidwho-721300

RESUMO

BACKGROUND: To contain the spread of COVID-19, a cordon sanitaire was put in place in Wuhan prior to the Lunar New Year, on 23 January 2020. We assess the efficacy of the cordon sanitaire to delay the introduction and onset of local transmission of COVID-19 in other major cities in mainland China. METHODS: We estimated the number of infected travellers from Wuhan to other major cities in mainland China from November 2019 to February 2020 using previously estimated COVID-19 prevalence in Wuhan and publicly available mobility data. We focused on Beijing, Chongqing, Hangzhou, and Shenzhen as four representative major cities to identify the potential independent contribution of the cordon sanitaire and holiday travel. To do this, we simulated outbreaks generated by infected arrivals in these destination cities using stochastic branching processes. We also modelled the effect of the cordon sanitaire in combination with reduced transmissibility scenarios to simulate the effect of local non-pharmaceutical interventions. RESULTS: We find that in the four cities, given the potentially high prevalence of COVID-19 in Wuhan between December 2019 and early January 2020, local transmission may have been seeded as early as 1-8 January 2020. By the time the cordon sanitaire was imposed, infections were likely in the thousands. The cordon sanitaire alone did not substantially affect the epidemic progression in these cities, although it may have had some effect in smaller cities. Reduced transmissibility resulted in a notable decrease in the incidence of infection in the four studied cities. CONCLUSIONS: Our results indicate that sustained transmission was likely occurring several weeks prior to the implementation of the cordon sanitaire in four major cities of mainland China and that the observed decrease in incidence was likely attributable to other non-pharmaceutical, transmission-reducing interventions.


Assuntos
Betacoronavirus , Infecções por Coronavirus/prevenção & controle , Política de Saúde , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Viagem , COVID-19 , China/epidemiologia , Cidades , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Humanos , Incidência , Modelos Teóricos , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Prevalência , SARS-CoV-2
11.
J Travel Med ; 27(5)2020 08 20.
Artigo em Inglês | MEDLINE | ID: covidwho-209793

RESUMO

BACKGROUND: We evaluated if interventions aimed at air travellers can delay local severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) community transmission in a previously unaffected country. METHODS: We simulated infected air travellers arriving into countries with no sustained SARS-CoV-2 transmission or other introduction routes from affected regions. We assessed the effectiveness of syndromic screening at departure and/or arrival and traveller sensitisation to the COVID-2019-like symptoms with the aim to trigger rapid self-isolation and reporting on symptom onset to enable contact tracing. We assumed that syndromic screening would reduce the number of infected arrivals and that traveller sensitisation reduces the average number of secondary cases. We use stochastic simulations to account for uncertainty in both arrival and secondary infections rates, and present sensitivity analyses on arrival rates of infected travellers and the effectiveness of traveller sensitisation. We report the median expected delay achievable in each scenario and an inner 50% interval. RESULTS: Under baseline assumptions, introducing exit and entry screening in combination with traveller sensitisation can delay a local SARS-CoV-2 outbreak by 8 days (50% interval: 3-14 days) when the rate of importation is 1 infected traveller per week at time of introduction. The additional benefit of entry screening is small if exit screening is effective: the combination of only exit screening and traveller sensitisation can delay an outbreak by 7 days (50% interval: 2-13 days). In the absence of screening, with less effective sensitisation, or a higher rate of importation, these delays shrink rapidly to <4 days. CONCLUSION: Syndromic screening and traveller sensitisation in combination may have marginally delayed SARS-CoV-2 outbreaks in unaffected countries.


Assuntos
Viagem Aérea , Infecções por Coronavirus/prevenção & controle , Programas de Rastreamento/normas , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Betacoronavirus , COVID-19 , Infecções por Coronavirus/transmissão , Humanos , Pneumonia Viral/transmissão , SARS-CoV-2 , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA